Drive the Dirac electrons into Cooper pairs in SrxBi2Se3

نویسندگان

  • Guan Du
  • Jifeng Shao
  • Xiong Yang
  • Zengyi Du
  • Delong Fang
  • Jinghui Wang
  • Kejing Ran
  • Jinsheng Wen
  • Changjin Zhang
  • Huan Yang
  • Yuheng Zhang
  • Hai-Hu Wen
چکیده

Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor

Superconductivity involving topological Dirac electrons has recently been proposed as a platform between concepts in high-energy and condensed-matter physics. It has been predicted that supersymmetry and Majorana fermions, both of which remain elusive in particle physics, may be realized through emergent particles in these particular superconducting systems. Using artificially fabricated topolo...

متن کامل

Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments

Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotro...

متن کامل

Cooper-pair injection into quantum spin Hall insulators.

We theoretically study tunneling of Cooper pairs from a superconductor spanning a two-dimensional topological insulator strip into its helical edge states. The coherent low-energy electron-pair tunneling sets off positive current cross correlations along the edges, which reflect an interplay of two quantum-entanglement processes. Most importantly, superconducting spin pairing dictates a Cooper ...

متن کامل

Propagation of Cooper pairs in carbon nanotubes with superconducting correlations

Propagation of Cooper pairs in carbon nanotubes in the presence of superconducting correlations is studied theoretically. We find that negative and positive currents induced by impurity scatterings between electrons and holes cancel each other, and the nonmagnetic impurity does not hinder the supercurrent in the regions where the superconducting proximity effects occur. The carbon nanotube is a...

متن کامل

p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017